

Chromosome Number

 Organisms with <u>2 parents</u> must inherit a <u>single</u> copy of every <u>gene</u> from <u>each</u> parent

When this organism produces gametes, those 2 sets of genes must be separated so that each gamete contains just 1 set of genes

Human have...

- 46 chromosomes
- Each parent contributes 23 chromosomes
 - Result is 23 pairs or 46 total
 - The pairs are called Homologous chromosomes
 - Have same length
 - Centromere position
 - Same traits (not same type)
 - Ear lobes
 - Eye color

Chromosome Number

All species have a specific number of chromosomes

- Fruit fly= 8
- Garden pea= 14
- ∘ Frog= 26
- Dog= 78

Chromosome #= Organism

Organism

Chromosome number

46

How many from each parent

Diploid number

Haploid number

Human

Fruit flies 8

Garden peas 14

Chimpanzees 48

Dogs 78

Amoeba 50

Homologous chromosomes

 The 2 sets of chromosomes from the male and female parent

DIPLOID

- A cell that contains both sets of homologues chromosomes
- This means the cell has <u>2</u> complete sets
 of duplicated chromosomes AND <u>2</u>
 compete <u>sets</u> of <u>genes</u> from each parent
- This is called <u>2N</u>
- Example: skin, hair, tooth, bone, All cells except for reproductive cells

HAPLOID

- A cell that contains a single set of chromosomes
- This means a haploid cell has <u>I set</u> of chromosomes
- This is the "<u>N</u>"
- Examples = gametes
 - Females: egg, ovum, ootid (oogenesis)
 - Males: sperm (spermatogenesis)

Phases of meiosis

- How are haploid (N) gamete cells produced from diploid (2N) cells?
- Meiosis is a process in which the <u>number</u> of chromosomes per cell is cut in <u>half</u> through the separation of <u>homologous</u> chromosomes

Meiosis

Meiosis produces haploid gametes

 There are <u>2</u> divisions of the nucleus

Results in 4 haploid cells

Meiosis

Meiosis I

- This is the <u>first</u> division of the <u>nucleus</u>
- Must go thru interphase
 - This means the chromosomes are <u>duplicated</u>
 - Each replicated chromosome consist of <u>2 identical</u>
 <u>chromatids</u> joined at the center

VOCABULARY Check

- Gametes
- Diploid
- Haploid
- Homologous Chromosomes
- n
- 2n

MEIOSIS I

MEIOSIS II

PROPHASE I

- Pairing of <u>homologous chromosome pairs</u>
 - Each chromosome has 2 chromatids
- Spindle fibers bind to centromere
- This forms a <u>tetrad</u>

What is Crossing Over?

- These <u>tetrads</u> go thru <u>crossing over</u>
- Produces exchange of genetic info
- animation on picture

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Prophase I

- Each replicated chromosome <u>pairs</u> with its <u>corresponding</u> homologous pair
- Nuclear membrane <u>dissolves</u>

Let's Draw it

METAPHASE I

- Paired <u>homologous</u> chromosomes line up across the <u>center</u> of the cell
- Spindle fibers have moved the tetrad to the center

METAPHASE I

Let's Draw it

ANAPHASE I

- Homologous chromosomes separate and move to opposite poles of cell
- Chromosome number is reduced from <u>2n to n</u> since the <u>tetrad pair</u> separated
 - Each chromosome consists of 2 sister chromatids

ANAPHASE I

TELOPHASE I & CYTOKINESIS I

- Nuclear membrane <u>reforms</u> around each cluster of <u>chromosomes</u>
- Cytokinesis follows by pinching the cytoplasm in half
- This results in creating 2 new cells
- These are <u>different</u> from each other
- Must go through <u>Meiosis II</u> to get the proper <u>chromosome</u> number

Telophase I

TELOPHASE I & CYTOKINESIS I

The process of Meiosis I

Result of Meiosis I

- 2 new cells that have different combinations of genes within them
- Cells are haploid since they contain half the number of chromosomes as the original cell

Vocabulary Check

- Crossing over
- Diploid
- 2n
- Haploid
- n
- Homologous chromosomes

Meiosis II

- Starts in interphase but <u>Synthesis phase</u>
 (<u>DNA replication</u>) does NOT occur
- Why is this important?

PROPHASE II

- Chromosomes become <u>visible</u>
- •What do they look like?

Let's Draw it

Prophase II

METAPHASE II

Chromosomes line up randomly at the equator of the cell

Metaphase II Let's Draw it

ANAPHASE II

- Chromosomes splits
- Sister chromatids <u>separate</u> and move to <u>opposite</u> poles of the cell

TELOPHASE II

- nuclei form around <u>each</u> set of chromosomes
- Each <u>nuclear</u> membrane reforms
- Cytoplasm divides in half creating 4 cells
- The end result of meiosis II is <u>4 haploid</u> <u>daughter cell</u>

Cytokinesis II

- All resulting cells are genetically different to each other
- Creation of eggs for females
- Creation of <u>sperm</u> for males
- Humans will have <u>23</u> chromosomes in each gamete
- This is the "n" amount

Animation of Meiosis

asinc.com/webcon tent/animations/co ntent/meiosis.html

Gametes to Zygotes

- After the <u>egg</u> gamete gets <u>fertilized</u> by the <u>sperm</u> gamete
- This is called a zygote
- This <u>zygote</u> will undergo many divisions by <u>mitosis</u> eventually forming a new <u>organism</u>

CHROMOSOMES...DEMYSTIFIED!

(in Humans)

Meiosis:

	Before Interphase	After Interphase	After Meiosis I	After Meiosis II
Chromosomes	46	46	23	23
Chromatids	46	92	46	23

X = Chromosome with 2 chromatids

@AmoebaSisters

GENETIC VARIATION

- 3 types
 - INDEPENDENT ASSORTMENT
 - CROSSING OVER
 - RANDOM FERTILIZATION

Independent Assortment

- The random distribution of homologous chromosomes during meiosis
- Each 23 pairs of chromosomes separates independently of each other
- 2²³ combinations of gametes with different gene combinations can be produced from I original cell
- So it is a matter of chance that YOU are YOU because there are 8 million different options of what possible chromosomes are in each gamete
- This occurs during <u>metaphase I</u> and it is completely random how the chromosomes line up with each in the middle

Independent Assortment

Gametes

Crossing Over

- a chromatid on one h-pair are broken or exchanged with the corresponding chromatids of the other h-pair
- occurs in first step(Prophase I)
- more types of gametes that are different
 - which makes them practically unlimited in number
- This is why you look like your parents but never exactly like them

Chromosome Crossing-over

Genetic Variation

In humans, each gamete receives one chromosome from each 23 pairs of chromosomes

 Each of the 23 pairs that offspring receives is by chance

Random Fertilization

- Zygote is a fertilized egg cell
- This is a random joining of 2 gametes which gives 64 trillion options
- Any sperm could have fertilized any egg creating a zygote (AKA you)... if a different egg was fertilized you would not be here!!

Importance of Genetic Variation

- The joining of gametes is essential to evolution
- No genetic process produces more variation than meiosis
- Evolution will increase as genetic variation increases
 - Racehorse breeding?
 - Sheep/cattle size

Males vs Females Meiosis

Males	Females
Spermatogenesis	Oogenesis
Form 4 sperm cells	Form I egg and 3 polar bodies
Occurs in testis	Occurs in ovaries
Occurs continuously in a males life	Stops after menopause

Pair of Homologous Chromosomes

3 key features of Meiosis

Unique Features of Meiosis click on picture

 http://www.sumanasinc.com/webcontent/ animations/content/mistakesmeiosis/mista kesmeiosis.html

Vocabulary Check

- Independent Assortment
- Spermatogenesis
- Oogenesis
- Ootid

Mitosis –vs- Meiosis

	MITOSIS	MEIOSIS
How many divisions?	one	two
How many and where does DNA replication occur?	one time in Interphase (S phase)	one time in Interphase I
Total number of cells produced	2	4
How do the cells look?	identical	different
What type of cells does it occur in?	body cells	gametes/sex cells
Why does each process occur?	Growth and repair	To reproduce more of that particular organism

Essential Questions

- How does the reduction in chromosome number occur during meiosis?
- What are the stages of meiosis?
- What is the importance of meiosis in providing genetic variation?
- Vocabulary: gene, homologous chromosomes, gamete, haploid, fertilization, diploid, crossing over, independent assortment