Human Heredity Notes

Chapter 14 Page 391

Genome

- The full set of genetic information that an organism carries in its DNA
- •Scientists look at <u>chromosomes</u> to study the genome
- Chromosomes are best seen in <u>metaphase</u>
 (mitosis) since they are in the <u>middle</u> of the cell
- The chromosomes are cut and placed into a picture called a <u>karyotype</u>

Karyotype

- A diagram that shows the complete diploid set of chromosomes grouped in pairs
- Arranged in <u>decreasing</u> size
- •Humans have <u>46</u> total or <u>23</u> pairs
- Chromosomes are aligned in pairs
- •The last set or the <u>23rd pair</u> are called the <u>sex</u> chromosomes

Karyotype

- •23rd pair is the **sex chromosomes**
 - -Males = XY
 - -Females= XX

- •Sets #1-22 are called autosomes
 - -These determine the rest of the **traits**

Sex Determination

- Gender is determined by the sex chromosomes (#23 pair)
- Female = XX
- Male= XY
- Males determine gender of baby
 - Why?

Karyotype examples

Karyotype from a female with Patau syndrome (47,XX,+13)

Karyotype Journal

Answer all questions into your journal books

CARRIER

- an individual who is <u>heterozygous</u> for a trait ex: Yy, Tt, Rr, Bb
- Has 1 <u>dominant</u> allele that covers 1 <u>recessive</u> allele
 - Doesn't show the <u>recessive</u> trait since the <u>dominant</u> has overpowered it
 - They are "<u>carrying</u>" the trait to possibly pass it on to the next <u>generation/offspring</u>

Sex-Linked Traits

- Traits controlled on the "X" chromosome
- Males are most <u>affected</u> the most
 - Since they have only <u>1 X-chromosome</u>
- Females less likely to get it
 - Have 2 X-chromosomes

- Examples: color blindness, hemophilia
- How do you do a Punnett square properly??
- Let's practice

Practice of Sex-linked Traits

- •Where do males get their X chromosome from?
- •How do you write the genotype for a female with a sex-linked trait?
- •How do you write the genotype of a male with a sex-linked trait?
- Cross a color blind male to a carrier female.
 - –List the genotypes (male/female & colorblind)

Chromosome inactivation

- Female have <u>2</u> doses since they have two <u>X</u>-chromosomes
- X is necessary for <u>development</u> in males/females
- One X-chromosome will stop functioning
 - This creates a <u>Barr body</u>
- The "Y" chromosome continues to work determining male characteristics

Calico Cats

- This can affect the coat color of cats
- Example of <u>calico cats</u>
 - Black color= black on the X (either male or female)
 - Orange color= orange on the X (either male or female)
 - Calico = has 1 black and 1 orange
 - can only be a female cat

Pedigree

- A chart that shows the pattern of inheritance for a particular trait within a family
- Dominant traits: every generation (Male/female)
- Recessive traits: skips a generation
- Autosomal traits: trait is on chromosome #1-22
- Sex-linked traits: on the X chromosome (male)

Pedigree

- What does each represent?
- Roman numerals stand for the generation number
- Numbers stand for the number of an individual in a particular generation

What type of Pedigree?

What type of pedigree?

What type of Pedigree?

I AM MY OWN GRANDPA

•https://www.youtube.com/watch?v=zelsxXDy

<u>ilc</u>

Amoeba Sisters

https://www.youtube.com/watch?v=Gd09V2 AkZv4

–Questions

•A couple with the ability to taste PTC have 2 grown sons and 1 grown daughter. The sons have the ability to taste PTC. Their daughter is a PTC non-taster. She married a PTC non-taster man, and they have 2 sons. What is the genotype of the grandsons?

Pedigree Practice in Journals Pg 108

- Draw a pedigree showing a married couple with 4 kids, all boys?
- How would you draw a married couple with 2 kids, the daughter is married and has a son, the older brother is not married?
- How would you draw a family that has 2 boys and 2 girls, the girls are carriers, and only the boys are married? All of the 2 granddaughters (cousins) are carriers just like their grandmother.

Pedigree Lab

 Open up journals books (page 108/109) and let's practice making some pedigree's

Pedigree #2

Homework

- Figure out Rudolph's family history of red-noses
- Since a Red nose is <u>recessive</u> and Black noses are dominant
 - -Red Noses =
 - –Black Noses=

To do

- 1. Complete the Symbol column (circles or squares)
- 2. Complete the pedigree on the back of his Family History (there should be 4 generations)
- 3. Don't forget each reindeer's name

Pedigree Review Quiz

Answer the questions onto page 110

Genetic Disorders

- Cystic Fibrosis
- Albinism
- Tay-Sachs Disease
- Huntington's Disease
- Achondroplasia
- Sickle cell anemia disease
- Hemophilia
- Color Blindness

Do you Remember?

- What does it mean to have an autosomal trait?
- What does it mean to have a sex-linked trait?
- What is a dominant trait mean?
- What does a recessive trait mean?

DNA changes = human traits affected

•Changes in a gene's <u>DNA sequence</u> can change <u>proteins</u> by altering their sequences which directly affects their <u>phenotype</u>

Cystic Fibrosis

- Caused by a defective gene that codes for a membrane protein
- Effect= Excessive mucus produced in lungs
- No cure
- Treatment includes drugs to clean out mucus
- Occurs primarily in the white population
- Recessive
- Autosomal

Sickle Cell Anemia Disease

- Cause= defective membrane protein
- Effect= RBC become sickle shaped
- No cure
- Treatment: blood transfusions
- Occurs usually in the African American population
- Recessive
- Autosomal

Huntington's Disease

- Cause= extra protein build up in brain
- Effect= Nervous system deteriorates during middle age
- No cure or treatment
- Death in middle age
- Dominant
- Autosomal

Tay-Sachs Disease

- Absence of a gene to break down fatty substances in brain
- Effect= Build-up of fatty deposits on brain
- Mental disabilities
- No cure or treatment
- Death by age 5
- Occur primarily in the Jewish population
- Recessive
- Autosomal

Color Blindness

 Defect in cones of the eye

Effect= Cannot see colors

- Occurs mostly in males
- Recessive
- Sex-linked

Hemophilia

- Gene defect with clotting blood
- Effect= Blood does not clot and can increase bleeding
- No cure
- Treatment: must take clotting factor VIII daily
- Effects males mostly
- Recessive
- Sex-linked

Achondroplasia

- A defective gene that affects bone growth
- Results in dwarfism
- Anyone
- Dominant
- Autosomal

Genetic Advantages

- Affects those homozygous for sickle cell
 - NN = normal cells
 - SS = sickle cells
 - SN= both sickle and normal cells together

Heterozygote is more resistant to malaria

Genetic Advantages

Cystic Fibrosis heterozygote

CC = normal

cc = has Cystic Fibrosis

Cc = normal but resistant to typhoid fever

Chromosomal Disorders

- Means an error in <u>Meiosis</u>
- •Each human gamete should have 23 chromosomes
- But what happens if the <u>homologous</u> chromosomes do <u>NOT</u> separate correctly

-This is called **Non-disjunction**n+1

n+1

metaphase I

anaphase I

Non-disjunction

- A gamete with an abnormal number of chromosomes leading to a disorder of chromosome number
- The gamete will have 1 copy of a chromosome
 - Example: Turner's Syndrome
 - A female with only 1 X-chromosome

Down Syndrome

- Gamete could have <u>3 copies of a chromosome</u>
- This is called <u>Trisomy</u>
- Example: Down Syndrome
 - 3 copies of #21 chromosome
- Example: Klinefelter's Syndrome
 - A male who has XXY sex chromosomes

Non-disjunction in sex chromosomes

Studying the Human Genome

Human Genome Project

- −<u>13</u> year international effort
- —Sequence all of the <u>3 billion base pairs</u> of Human DNA
- -This would identify ALL <u>human genes</u>
- -Completed in 2003
- Helps us to locate diseases and disorders
- —Someone can know their exact genetic make-up and what they can pass on to their offspring

Human Genome

