Name: Key-Distetano	
Name: New VICTORIAL SOLL BIO. 1abdehim.4d.5d	
Chapter 11 Genetics: The Work of Mendel page 3	308
Ill organisms have a set of <u>Chacteristics</u> inherited from their <u>parents</u>	\$
: the delivery of characteristics from parents to offspring	
Genetics : the study of heredity	
Oregor Mendel (considered to be the Father of	en.
~Studying of pea plants~	
True-Breed: <u>demonstrates 1 form of a trait</u>	
Self-Pollination: There that pollinetes (fortilizes) itscif	
Thus the traits of this offspring should be the	
• Trait= a specific charteristic of an individual	
However WHY do some differ?	
Cross-Pollination: 1 tower fertilizes unother	
This creates a hybrid Offspring of a cross between parents with different trails	· ·
<u>~Generation of Genetic Crosses~</u>	
Parental Generation or	
o These are the <u>Crainal parents</u>	
o These are <u>Dure</u> for their trait	
o How were these crossed: 2 pure breeds crossed (Idam #1 rec)	
First Filial of Fi	
 These are the offspring of the generation 	
o All of these show the <u>dominant</u> trait	
O Why do they only show this trait?	
	are determined by
factors that are <u>Pussed</u> from <u>l</u> parental generation <u>next</u>	n to the
 These factors are called genes: <u>factors passed from parent to off</u> 	sprino
He concluded that there must be different Contrasting	
■ The different forms of a gene is called an	
 There are alleles for every trait that you have 	
This also led to CONCLUSION #2: Principle of Duminance	
	and some are
considered to be recessive	

0	DOMINANT: torm of a trait that appears	
	Must be written with a	etter
	 Only needs to have out of the 	alleles to be considered dominant
	Examples: T.F. R. B	
0	RECESSIVE: form of trait masked by dom	incept
	o Must be written with alawtrasele	tter
	o Must have 2 recessive	alleles to be considered recessive
	 How can we prove that there are alternate forms of a 	a gene??
	\tilde{C} \tilde{C} . \tilde{A}	1
0	The First Filial Generation was then 3elf-textiliz	ed
Carand Filial a	or the FZ	
Second Filial d	are the offspring of theFigeneration	
	a sudden he found the <u>receptive</u> trait	showed up
	There was 3 (75%) dominant	. snowed up
	There was $\sqrt{(25/.)}$ recessive	OSE
	How can this be?	
0	MENDEL'S CONCLUSION = LAW OF SEGREATION	
O	During Quivite formation the	Alleles for each gene
	from each other, so that each	ch On water carries only
	for each Gyne	J carries only
	for each cycle Thus Fa generation must have 1 of each	ach allele but the
	dominant is seen	X
o All of t	these are in a 3:1 ratio 3 dominant to 1 1	eressiu e
	0 -	
	Order of generations \longrightarrow F_1	→ F2
e ^{re} s:	mon solination	kanaki wakantiak
, e	ress-rolination	parent generation
	l l l l	3 15
	sef polination	f1 generation
	T The second	
	3:1 ratio	FT recognition
	3.1 fautu	f2 generation
~Applying Me	endel's Principles~	
2	1.12	
11000	: The likelihood that a particular ever	6
	Calculations: <u>Number of 1 kind of possible</u>	
	Total number of all possible	e outcomes

Practice:

Homozy gous : orga	nisms that have 2 identical alleles for a particular gene			
2 types 1) Hornozygus Dorninart a. Examples RR TT BB	: 2 dominant alleles			
2) Homozygous Recessive a. Examples: Ir It bb				
Thus there must be 1 deminant and 1 Examples: Ry Tt Bh				
This is what is physical seen or obse	hysical characteristics of an organism erved			
This is the : the ge	enetic make-up of an organism			
Punnett Square predict the genotype and phenotype combinations of a ge	: this diagram uses mathematical probability to help			
KA 1 1 1 1 1	en particular trait is crossed between a male and			
male and female to identify all possible outcomes Has possible genotypes Has possible phenotypes	en <u>2</u> traits are simultaneously crossed between a			
Independent Assortment: the principle states that independently during the formation of	for different traits can Segregate			
How to do a Punnett Square – we will do this together but here is the basic set-up Refer to our Pea Chart Handout or Page 316 in your textbook				
Monohybrid Punnett Square	Dihybrid Punnett Square			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Male gametes			
Male gametes				
Female Gamete offspirits	Female Gamete			
* I aildo per gamete	2 arteies — (65)			

Other Patterns of Inheritance

page 319

Incomplete Dominance: The haters 24 goote, then type = mix	Codominance: The heteroxygote phenotype = Both shown			
Situation Where I culture is not completely Both alleles are expressed in the heterozygous individual The heterozygous phenotype is a make of the 2 alleles Example a Snapdragon Flower CRCR = flower is CCCW = flower is White CRCW = flower is DINE Other examples include:	Situation where the prentype of the hoterzygote Situation where the prentype of the hoterzygote The heterzygous phenotype shows Foth alleles Example Roan coat of a horse/cattle CRCR = horse is red CWCW = horse is Nother CRCW = horse is Rear Other examples include:			
 i. A gene that has more than 2 alleles o Example: Blood (A.B.O.AB); 10 bit coat o Each organism gets a total of 2 alleles (one from each parent) but there are more than 2 to choose from i. When traits are controlled by the interaction of 2 or more genes o Examples: Skin Color, hair color, eye color 				
~Genes and the environments~	fect <u>a ene</u> expression and influence			

Chapter 14 Human Heredity Page 391

How	do we "see" our chromosomes?"				
en	ome: full set of genetic information that an organism cornes in its DNA				
0	Scientists look at Chromosomes to study the genome				
0	Chromosomes are best seen in <u>metaphase (mitosis)</u> since they are in the <u>middle of the cell</u>				
0	The chromosomes are cut and placed into a picture called a				
0	: a diagram that shows the complete diploid set of chromosomes				
	grouped together in pairs				
	o It is arranged in order of <u>Jecrensing</u> size of chromosomes				
	o It is arranged in order of <u>Jecrensing</u> size of chromosomes o Humans have <u>Ho</u> total chromosomes				
	 Humans have 23 pairs of chromosomes 				
	o The Chromosomus are aligned up in pairs				
	o The last set or the 234 pair are called the Sex chromosomes				
	These determine the of an organism				
	Males have sex chromosomes				
	Females have x x sex chromosomes				
	o Set number 5 1-22 are called <u>Quito SomeS</u>				
	These determine the rest of an organisms'				
Car	rier: an individual who is heterozygous for a trait				
0	Has one dominant allele that covers/masks one recessive allele				
0	This individual does not show the recession trait since the demonstrate has over powered it				
0	They are " carrying " it and can possible pass it on to the next generation offspring				
Sex	-Linked Traits				
0	Traits controlled by genes located on the \(\frac{\tag{Chrismuserne}}{\tag{Chrismuserne}}\)				
0	Males are Most often since they have only one X Chromosome				
0	Females are less likely to express the trait since they have twoX Chromosomes				
0	Examples include: Color-blindness, hemophilia				
Chi	romosome Inactivation				
0	Females have dosages since have two chromosomes				
0	The X chromosome is necessary for development of both males and females				
0	One of the female chromosomes will functioning in all of the females cells				
	o This creates a Barr Book (dense region in a female nucleus)				
0	The Y chromosome of males continues to work to determine male characteristics				
0	This can affect the coat color of some cats (Calico				
	o Black color means it has "Diack" on the X sex chromosomes and can be either				
	male/female				
	Orange color means it has Orange on the / sex chromosomes and can be either				
	mage (camal)				
	o Calico means it has black Drange y sex chromosomes and can be only				
	<u>female</u>				

How do you demonstrate how a particular trait is passed on in a family?

Pedigree : a chart that shows the pattern of inheritance for a particular trait withi	n a family
what do all of these mean? Indie of these mean? Individuals within a ge	siblings
Dominant pedigree demonstrates = maiel female who have it in every generation	
Recessive pedigree demonstrates= 5Kip3 a generation	8.0
Autosomal Pedigree shows: trait on chromosome \$1-22	
Sex-Linked Pedigree shows: trait on X chromosome (usually males god it)	
~Human Genetic Disorders~	
How can a change in DNA affect a human's traits?	

Changes in a gene's _____ DNA Sequence ____ can change ____ Droteins ____ by altering their

Genetic Disorders

sequences which directly affects their Divently De

Disorder	Cause	Effect	Population	Dominant/ Recessive	Autosomal/ Sex-Linked
Cystic Fibrosis	defective numbrane	White &	thick muous in lungs	recessive	autissimal
Sickle Cell Disease	defective RBC (hemoglobin)	Sickle shaped RBC	African American	recessive	Autosomal
Huntington's Disease	ectra protein in brain	nérious system deteriortes	middle	dominant	autosum
Tay-Sachs Disease	cubsence of may mak to break failty substance in	fat deposits build-up on brown brain	Jewish	1 80055000	Aldosome
Color Blindness	defect in cones of eyes	carnot see	mole	Yelessive	sex-linted
Hemophilia	in blood clating	Cannot stop biecding	male	recessive	sex-linked
Achondroplasia	a gene affection	dwartism	All	dominari	autosimal

Genetic Advantages

Malaria Heterozygote

NN-normal
NS-normal - resistant to malaria
35-sickle cell

Cystic fibrosis heterozygote

CC - normal — restrict to cc - cystic forces Typical feur

UII	IUIII	iosoina	Districts
	0		eans there is an error in
	0	Each h	uman Gromete should have 23 chromosomes
	0	But wh	at happens if the homelogous chromosomes do NOT separate correctly
		0	This is called NUN-DISJUNCTION
			 A Councit with an abnormal number of
			chromosomes leading to a
			 The gamete could end of having only 1 copy of an allele
			o Example: Turner's Syndrome
			■ Females who have only 1 X. chromosome
			The gamete could end of having 3 copies of an allele
i,			This is called Tripomu
			o Example: Down Syndrome
			■ They have3_ copies of chromosome number ゑ l
			o Example: Klinefelter's syndrome
			A male who has XXY sex chromosomes
C+	udui	ing the	Human Genome
Ji	o o		tuman Genome Project
			A 13 year international effort to Sequence all of the
			3 billion base pairs of human DNA which would identify all
Ü			human genes
		0	Complete in 2003
		0	Helps us to locate disorders and diseases
		0	Someone can know their exactQeneric make-up and what they can
			on to their offspring