Chapter 12 DNA

DNA Facts

- Each cell contains 9 feet of DNA
- In an average meal, you
 EAT approximately
 55,000,000 cells
- This is equal to approximately 93,205 miles of DNA

We share 70% of our

DNA with slugs.

DNA facts

IF YOU UNWRAP ALL OF THE DNA YOU HAVE IN ALL YOUR CELLS, YOU COULD REACH THE MOON 6000 TIMES.

This 0.1% DNA DIFFERENCE

between us may have to do with the number of nucleotides in a person's DNA. **99.9%** OF OUR DNA SEQUENCE IS THE SAME AS OTHER HUMANS⁷.

Turn of 20th century

Scientists began to wonder about what makes up genes

Griffith

One of first scientists to investigate genes
 His goal was to figure out how <u>bacteria</u> made people <u>sick</u>

Griffith's Experiment

- What did he do?
 - Mouse #1: S bacteria
 - Dead
 - Mouse #2: R bacteria
 - alive

- Mouse #3: Heat-killed S bacteria
 alive
- Mouse #4: Heat-killed S and R bacteria
 Dead

Griffith's Experiment

What did he accomplish/prove?

- The 2 bacteria must have mixed genetic content
- This is called **TRANSFORMATION**
 - Since 1 type of bacteria had been changed permanently into another disease causing bacteria

Avery's Experiment

What did he prove?

 DNA is the cause of transformation and that it transmits genetic info from 1 generation to the next

Hershey & Chase

What did they prove?

Their experiment proved Avery's

 Result that DNA was the genetic material found in genes of ALL living organisms

BACTERIOPHAGE: a virus that affects bacteria

-DNA-

- Full name: **Deoxyribose nucleic acid**
- Shape: *double helix* (resembles a spiral staircase)

Base unit: nucleotide

Thymine (Yellow) = T Guanine (Green) = G Adenine (Blue) = A Cytosine (Red) = C

Types of bases add to notes

PURINES

Made up of *Adenine* and *Guanine*Made up of a double ring

PYRIMIDINES

- Made up of *Thymine* and *Cytosine*
- Made of only 1 ring

DNA

What are the Parts?

Chargaff's Observations

He analyzed amounts of bases in various species: He discovered:

- Adenine always equaled Thymine
- Cytosine always equaled Guanine
- The amount of A, T, G, C differ among each type of organism
- This became known as Chargaff's Rule
 - Bases when bonded are always **<u>complementary</u>** to each other
 - This is often called <u>Base-Pairing</u> rules

X-ray Diffraction

Rosalind Franklin

- Used to this technique to discover the
 - shape of DNA

- Photo 51 (final pic)
- This proves that DNA is a <u>double helix</u> like a twisted <u>ladder</u>
- Formed by <u>2</u> strands of <u>nucleotides</u> twisted together

DNA is the <u>Genetic</u> material of <u>ALL</u> organism

WATSON & CRICK

What did they find?

- Found the structure of DNA
 Credited in history for it
- Outside strands=

- Alternating <u>sugars</u> and <u>phosphate</u> groups
- Inside=
 - Adenine bonds to <u>Thymine</u> by using <u>2</u> hydrogen bonds
 <u>Guanine</u> bonds to <u>Cytosine</u> by using <u>3</u> hydrogen bonds

Thus the Base Pairing rules

Chargaff's Rule

PRACTICE

ATGCTTAAGCGTTACGTACGG

GGCCTAATTTCCCCATCGATT

TTTAAACCCGGGTGACTAGCT

Prokaryotes DNA is held in the <u>cytoplasm</u>

Made in a **ring** shape

Bacterial chromosomes have a single point of origin.

EUKARYOTES

DNA is held in the <u>nucleus</u>
Organized in
<u>chromosomes</u>
Wrapped around <u>histones</u>
and coils into

nucleosomes

	Gel Electrophoresis	@AmoebaSisters
Baby Guppy		+
Mother Guppy		
Father Guppy		
	J	

DNA sequencing

 Scientists figure out the order of bases in a piece of DNA from an X-ray film like this.

This is called sequencing.
Each dark band on the X-ray ladder matches a colored base.

 Each row of bands corresponds to one of the four bases.

Essential Questions

- What is the basic building block of DNA?
- What bases are in DNA?
- What are the 2 categories of bases? Which is in each?
- What is the difference between eukaryotic DNA and prokaryotic DNA?

Vocabulary: double helix, nucleosome, histone, adenine, guanine, thymine, cytosine, purine, pyrimidine

Build your DNA

What did you notice about the 2 sides? What did you notice about the middle?

antiparallel

Sec 2 Replication of DNA

 DNA replicates by making a strand that is <u>complementary</u> to each <u>original</u> strand

- Following all <u>base-pairing rules</u>
- Occurs during <u>Synthesis</u> (S phase) of <u>Interphase</u>

DNA Replication = 3 steps 1) unwinding 2) base-pairing 3) joining

JOINING

UNWIND PAIRING

Unwinding Stage

DNA helicase (an enzyme) unwinds and unzips the double helix
 Hydrogen bonds are broken between the bases
 This opens up the DNA to start being copied

Base-Pairing Stage

- DNA polymerase (an enzyme) joins individual <u>nucleotides</u> to its <u>complement</u> on the new strand
 - It connects only to its complement
- Adenine bonds to Thymine
- Guanine bonds to Cytosine
- This allows <u>identical</u> copies of the original <u>double</u> strand to be produces

Joining stage

The DNA strand is put back together

- **Eukaryotes** have many <u>origins</u> of replication on a <u>chromosome</u>
- Replicate in <u>both</u> directions until entire chromosome copied

Prokaryotes have 1 origin of replication

replicate in <u>both</u> directions until each chromosome is copied

<u>Telomeres</u> are placed on the ends of <u>chromosomes</u>

- They are difficult places for <u>replication</u>
- They are like "caps"

Joining Stage

Bacterial chromosomes have a single point of origin.

Figure 14-11b Biological Science, 2/e

Chromosome GGTTAGGG telomere

DNA Replication

Rate of replication

- 50 nucleotides per second in mammals
- 500 nucleotides per second in prokaryotes
- How long would it take a bacterium to add 4000 nucleotides?
- A human?

Multiple Forks

Replication DOES NOT take place at one end and the stop at the other end

- Instead there are multiple replication forks
 - 100 sections that consist of 100,000 nucleotides
 - An entire chromosome can be replicated in 8 hours.
 - It would take about 3 full days if we didn't use multiple replication forks!!!!

Essential Questions

- What are the stages of DNA replication?
- Name and describe the function of the enzymes used during DNA replication.
- What is the difference between a prokaryote and eukaryote method of DNA replication?
- Vocabulary: DNA polymerase, DNA helicase, Unwinding stage, Pairing Stage, Joining Stage

DNA "Quiz Check"

- Complete the "Quiz" check
- 6) draw a nucleotide
- 7) describe how Adenine bonds to Thymine
- 8) describe how Guanine bonds to Cytosine
- 9) list the 3 steps of DNA replication
- 10) briefly explain each step of replication

DNA Workshop

We will complete this together
 All answers go into your journal

DNA Concept Map

- Number 1 to 15
- Fill in the boxes with the correct word to complete the flow chart
- Use the worksheet to help you also

