Cell Structure Introduction - Section -1 - * Cell Scientist and Theory - Section -2 - * Plasma membrane - Section -3 - * Cell Organelles ### **Cell Scientists** • The invention of the <u>microscope</u> led to the discovery of <u>cells</u> • Why does this make sense? ### **Contribution of Scientists** ### Robert Hooke ### **Anton Van Leeuwenhoek** Leeuwenhoek microscope ### Milestones | Year | Scientist | Contribution | |---------------|---------------------------------|---| | 1500's | Galileo | Convex lenses with a magnification greater that 5x became available | | 1590 | Janssen
Janssen | They are credited with the first compound microscope | | 1665 | Robert
Hooke | Looked at cork cells under microscope Looked like cells that monks lived Coined the term "cell" | | 1683 | Anton Van
Leeuwenhoek | He produced over 500 single lens microscopes. He discovered bacteria, human blood cells, spermatozoa and protists | | 1830-1
855 | Schleiden
Schwann
Virchow | Cell theory developed | | 1881-9
0 | Pasteur/Koch | Study of bacteria Pasteurization and Germ Theory | ### Cell The basic structural and functional unit of all living matter # What's an Organelle... # Specialized structures that carry out specific cell functions # The Cell Theory Men... - Matthias Schleiden - Theodor Schwann - Rudolph Virchow Virchow Schleiden # The Cell Theory... - •1) All living things are made up of cells (Schleiden) - •2) Cells are the basic unit of structure and function in living organisms. (Schwann) - •3) New cells are produced from existing cells. (Virchow) # Prokaryotic vs. Eukaryotic cells ### **Prokaryote** - No nucleus - No membrane bound organelles - •1-10 um in size - Evolved 3.5 billion years ago - Only bacteria ### **Eukaryotes** - Nucleus (DNA enclosed in) - Many organelles - 2 1000 um in size - Evolved 1.5 billion years ago - Example: - * Plant cells - * Animal cells - * Fungi cells - * Protist cells Plant -vs. Animal Cell List 4 differences ### Multicellular – Vs.- Unicellular ### **Unicellular** organisms will be composed of 1 cell ### **Section 1 Essential Questions** - 1) How are the advances in microscope technology related to discoveries about cells? - 2) What are the parts of the Cell Theory? - 3) What are the differences between a prokaryotic cell and eukaryotic cell? - 4) How does a microscope work? *Vocab:* Cell eukaryotic cell Cell theory organelle prokaryotic cell microscope # Section #3 Cell Structure and Organelle Notes # What's an Organelle... # Specialized structures that carry out specific cell functions ## Cytoplasm (yellow) - Anchor for all organelles - Holds the cell and its organelles together - Allows for fluidity of the cell - Contains nutrients for cell In animal, plant and prokaryote cells Can see under microscope # Nucleus orange - In eukaryotes only - Control center - Contain chromosomes and other genetic material In animal <u>and</u> plant cells only Can see under microscope # Nucleus parts (orange) #### • Nuclear Membrane/envelope * Regulates the passage into and out of the nucleus - * Surround the nucleus - * Has nuclear pores #### • Nucleolus - * Holds DNA and chromosomes - * Original maker of ribosomes - * Location = Inside the nucleus In animal <u>and</u> plant cells only Cannot see # Vacuole (blue) - Storage chamber for food and water - Aids in support (shape) of plant - Very big in plants - * What happens when you snap celery? - You broke the vacuole 😕 Found in plant cells, sometimes in animals Can see it ### **Vesicles** Store materials - Not in prokaryotes - In both animal and plant cells - Can see under microscope - * Breaks down and recycles macromolecules - * "janitor" of cell - * In animals and rarely in plants - * Cannot see it # Lysosomes # Cytoskeleton - Maintains cell shape - Helps cell to move - 2 parts to it - * Microtubules - * microfilaments In animal <u>and</u> plant cells only Cannot see under microscope # Cytoskeleton= the framework #### ADD to notes #### • Microtubules - * Gives support and shape to the cell - * Like support beams - * Long thin protein tubes - * Makes the cell 3D #### • Microfilaments - * Gives support and shape to the cell - * Like support beams - * Long fine protein threads - * Makes the cell 3D In animal <u>and</u> plant cells only Cannot see under microscope ### **Centriole** - F= Helps in cell division - * Moves the chromosomes during mitosis and meiosis - * Made of microtubules In animal cells mostly CAN see it ### Ribosomes (black) • F= Help to make proteins In animal and plant and prokaryote cells Cannot see it ### Endoplasmic Reticulum (purple) - Near the nucleus; Like a passageway from nucleus to rest of cell - Assemblies proteins and lipids - Transports proteins and breaks down drugs in cell - 2 types - * **SER** = smooth endoplasmic reticulum (no ribosomes) - * RER= rough endoplasmic reticulum (covered in ribosomes) In animal <u>and</u> plant cells only Cannot see it # Golgi Apparatus (red) F= modifies, sorts and packages proteins and lipids for storage or transport out of cell - * Works with the SER - * Storage and release of chemicals In animal and plant cells only Cannot see ## Chloroplast (green) - Convert solar energy to chemical energy stored in food - Photosynthesis occurs here Only in plants and prokaryotes Can see it # Mitochondria (brown) - F= converts chemical energy in food to usable compounds - * Makes ATP (energy) - * The Powerhouse of cell - L= Found mostly in muscle cells in the cytoplasm - Has their own nucleus In animal <u>and</u> plant cells Cannot see it ### Cell Wall (gray) - L= Found in - * Plant cells - * Bacteria cells - * Fungi cells - FUNCTION= - * Shapes, Supports and protects the cell Membrane -Peroxisome Golgi **Apparatus** - * inflexible - * Contains cellulose Only in plants & bacteria Can see it ### Cell Membrane (pink) - Surrounds the cell - Regulates the movement of substances in and out of cell - Present in plants, animals and prokaryotes - Can locate on microscope # Movement of a cell #### • Flagella - * Long hair-like extension - * Aids in movement - * Whips - * Located inside the cytoplasm but hangs outside of cell ### • Cilia - * Short hair-like extensions - * Help organisms to move - * Located inside the cytoplasm but hangs outside of cell - * Think Loogie # Flagella In animal and prokaryote cells ### **Questions to Ponder?** - Name the parts of the Cell Theory. - What controls what enters and exists the cell? How about the nucleus? - Why are microscopes useful? - Which came first the cell theory or microscopes? - Distinguish between a prokaryotic and eukaryotic cell. - What organelle(s) help to give a plant more rigidity? Pg 38 #### Animal Cell Pg 39 Plant Cell chloroplast ribosomes Golgi Body Endoplasmic reticulum vacuole Nuclear membrane nucleolus nucleus Cell Membrane mitochondria Cell Wall cytoplasm ## Day 2 ## The organelle went on Vaca? - The materials in/out of cell would be unfiltered; lack of structure Cell membrane Nucleus - Cell could not function; no direction for organelles - Organelles would have no protection; nutrients could not move thru the cell Vacuole - No storage place for food/water ER - Proteins would have no system of transport mitochondria - No energy for cell to perform its functions ## Vacation of Organelles - Cells would not have building blocks to create organelles, repair cell, transport - Cells would fill up with waste - Plants would not be able to make food chloroplast - Plant and bacteria would lack support and protection #### **BACTERIA** - * Divided into 2 Domains - Domain Archaea - -KINGDOM ARCHAEA - Bacteria that live in extreme habitats - Methanogens, thermopiles - Domain Bacteria - -KINGDOM BACTERIA - Bacteria that live everywhere else - E. coli - streptococcus ## Oxygen or not? Most bacteria require oxygen for respiration —thus they are called aerobic bacteria Others may be killed in the presence of oxygen – these are called anaerobic bacteria ### How to classify bacteria? Part 1 - By using the **Shape** and **Arrangement** - 3 main shapes - * COCCUS - * SPIRILLUM - *BACILILUS ## How to classify bacteria? Part 2 - ARRANGEMENT - * DIPLO- - *STAPHYLO- - *STREPTO- ## **Naming Practice ©** - 2 circles = - Round but in a chain= - Rods in a chain= - Spirals in a cluster= - Circles in a cluster= #### **Bacteria's Cell Wall** - The <u>cell wall</u> is very strong to prevent ruptures (bursting) - Antibiotics KILL bacteria (like penicillin) - * This is the only thing to kill bacteria - * It interferes with the cell wall - * It actually <u>drills a hole</u> in the cell wall # Types of cell wall determines antibiotic to be used #### • Gram-stain Positive - * Turns purple/blue - * cell wall is layered - * staphylococcus and streptococcus #### Gram-stain Negative - * Turns pink/red - * cell wall is thick - * Examples: *E.coli*, gonorrhea, salmonella and meningitis ## How they reproduce - Asexually - * Binary fission - * Conjugation ## Types of Bacterial Diseases Pick 4 and write them - Tuberculosis - Diphtheria - Scarlet fever - Bubonic plague - Typhus - Tetanus - Cholera - Tooth cavities - Lyme disease #### A VIRUS is ... - A disease causing non-living particle - Can only reproduce in living cells (a host) https://www.youtube.com/watch?v=Rpj0emEGShQ #### **Considered NON-LIVING?** - Cannot respire on own - Cannot move on own - Cannot grow on own - Cannot reproduce on own - It needs a **HOST** for all of these things ## How does it Reproduce? - Before a virus can enter and reproduce in a cell - * It must recognize and attach to a specific site - * can only enter and reproduce in certain cells * Once inside a host a virus takes over THAT cell's metabolism ### Reproduce (add to notes) - LYSOGENIC CYCLE - Virus stays dormant waiting for perfect conditions to come out - LYTIC CYCLE - Cell is destroyed #### Lytic vs Lysogenic Cycles Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings. #### Virus - <u>Capsid</u>: a protein coat that holds the genetic material - **Envelope**: a membrane that surrounds the capsid for added protection #### Genetic material - Can be composed of <u>DNA</u> - * Warts - * Chicken pox - * mono - Can be composed of RNA - * HIV - * AIDS - * Influenza - * rabies #### Journal book info Page 40 ## Page 40 Virus -vs.- Bacteria #### Virus - 1. Not alive - 2. Can function in a host - 3. Genetic material is <u>DNA or</u> <u>RNA</u> - 4. Does not go thru metabolism - 5. No cytoplasm thus it cannot go thru chemical reactions #### Bacteria - 1. Is <u>alive</u> - 2. Contains <u>some organelles</u> such as cytoplasm, cell wall, and ribosomes - 3. Genetic material is **DNA** - 4. Does go thru metabolism - 5. Has <u>cytoplasm</u> thus it can go thru <u>chemical reactions</u> - 6. Mobile on own using flagella ## **Bacteria Cell Diagram** ## Virus diagram ### Germ Theory of disease - some diseases are caused by microorganisms. - These small organisms, too small to see without magnification, invade humans, animals, and other living hosts. - Their growth and reproduction within their hosts can cause a disease. - "Germ" may refer to a virus, bacterium, protist, fungus, or prion. - "Germs" are considered pathogens. # Figure out what these people did for the Germ Theory: - * Ignaz Philipp Semmelweis - * Louis Pasteur - * Robert Koch - * Florence Nightingale - * Joseph Lister - * William Stewart Halsted ## Germ Theory Show other power point ## Day 3 ## Graphic Organizer – Page 46 #### **Lab Stations** ### Station #1 – Compare and Contrast - * Page 43-44 - * Complete all 5 compare/contrast cards - * Write the question then answer it - Red - Orange - Yellow - Purple - Pink # Station #2 — Organelle Function Matching - Page 42 in journal - List all 12 organelles from the envelope on the left side of the journal - Then correctly match the function card to the name - Write it down - This must be 100% correct before you can move on to the next station # Station #3 — Organelle Identification - Page 45 in journal books - Label the page A thru N on the left side - Correctly identify each diagram - This must be 100% correct before you can move on #### Station #4 – Cell Sketch - By reading the directions, correctly make a cell sketch of your choice - This can be completed individually or as a partnership # Station #5 — Cell Trek Game - 4 people needed to play - You will need your own playing piece (eraser, piece of paper, coin, ring, etc) Winner has the most organelles #### HELPFUL WEBSITES #### SOL REVIEW QUESTIONS - * Complete Review # 12 - * http://solpass.org/hs.htm