Cell Structure Introduction

- Section -1
 - * Cell Scientist and Theory
- Section -2
 - * Plasma membrane
- Section -3
 - * Cell Organelles

Cell Scientists

• The invention of the <u>microscope</u> led to the discovery of <u>cells</u>

• Why does this make sense?

Contribution of Scientists

Robert Hooke

Anton Van Leeuwenhoek

Leeuwenhoek microscope

Milestones

Year	Scientist	Contribution
1500's	Galileo	Convex lenses with a magnification greater that 5x became available
1590	Janssen Janssen	They are credited with the first compound microscope
1665	Robert Hooke	Looked at cork cells under microscope Looked like cells that monks lived Coined the term "cell"
1683	Anton Van Leeuwenhoek	He produced over 500 single lens microscopes. He discovered bacteria, human blood cells, spermatozoa and protists
1830-1 855	Schleiden Schwann Virchow	Cell theory developed
1881-9 0	Pasteur/Koch	Study of bacteria Pasteurization and Germ Theory

Cell

 The basic structural and functional unit of all living matter

What's an Organelle...

Specialized structures that carry out specific cell functions

The Cell Theory Men...

- Matthias Schleiden
- Theodor Schwann
- Rudolph Virchow

Virchow

Schleiden

The Cell Theory...

- •1) All living things are made up of cells (Schleiden)
- •2) Cells are the basic unit of structure and function in living organisms.

 (Schwann)
- •3) New cells are produced from existing cells. (Virchow)

Prokaryotic vs. Eukaryotic cells

Prokaryote

- No nucleus
- No membrane bound organelles
- •1-10 um in size
- Evolved 3.5 billion years ago
- Only bacteria

Eukaryotes

- Nucleus (DNA enclosed in)
- Many organelles
- 2 1000 um in size
- Evolved 1.5 billion years ago
- Example:
 - * Plant cells
 - * Animal cells
 - * Fungi cells
 - * Protist cells

Plant

-vs.

Animal

Cell

List 4 differences

Multicellular – Vs.- Unicellular

Unicellular

organisms will be composed of 1 cell

Section 1 Essential Questions

- 1) How are the advances in microscope technology related to discoveries about cells?
- 2) What are the parts of the Cell Theory?
- 3) What are the differences between a prokaryotic cell and eukaryotic cell?
- 4) How does a microscope work? *Vocab:*

Cell eukaryotic cell Cell theory organelle prokaryotic cell microscope

Section #3 Cell Structure and Organelle Notes

What's an Organelle...

Specialized structures that carry out specific cell functions

Cytoplasm (yellow)

- Anchor for all organelles
- Holds the cell and its organelles together
- Allows for fluidity of the cell
- Contains nutrients for cell

In animal, plant and prokaryote cells

Can see under microscope

Nucleus

orange

- In eukaryotes only
- Control center
- Contain chromosomes and other genetic material

In animal <u>and</u> plant cells only Can see under microscope

Nucleus parts (orange)

• Nuclear Membrane/envelope

* Regulates the passage into and out of the nucleus

- * Surround the nucleus
- * Has nuclear pores

• Nucleolus

- * Holds DNA and chromosomes
- * Original maker of ribosomes
- * Location = Inside the nucleus

In animal <u>and</u> plant cells only Cannot see

Vacuole (blue)

- Storage chamber for food and water
- Aids in support (shape) of plant
- Very big in plants
 - * What happens when you snap celery?
 - You broke the vacuole 😕

Found in plant cells, sometimes in animals

Can see it

Vesicles

Store materials

- Not in prokaryotes
- In both animal and plant cells
- Can see under microscope

- * Breaks down and recycles macromolecules
- * "janitor" of cell
- * In animals and rarely in plants
- * Cannot see it

Lysosomes

Cytoskeleton

- Maintains cell shape
- Helps cell to move
- 2 parts to it
 - * Microtubules
 - * microfilaments

In animal <u>and</u> plant cells only Cannot see under microscope

Cytoskeleton= the framework

ADD to notes

• Microtubules

- * Gives support and shape to the cell
- * Like support beams
- * Long thin protein tubes
- * Makes the cell 3D

• Microfilaments

- * Gives support and shape to the cell
- * Like support beams
- * Long fine protein threads
- * Makes the cell 3D

In animal <u>and</u> plant cells only Cannot see under microscope

Centriole

- F= Helps in cell division
 - * Moves the chromosomes during mitosis and meiosis
 - * Made of microtubules

In animal cells mostly CAN see it

Ribosomes (black)

• F= Help to make proteins

In animal and plant and prokaryote cells

Cannot see it

Endoplasmic Reticulum (purple)

- Near the nucleus; Like a passageway from nucleus to rest of cell
- Assemblies proteins and lipids
- Transports proteins and breaks down drugs in cell
- 2 types
 - * **SER** = smooth endoplasmic reticulum (no ribosomes)
 - * RER= rough endoplasmic reticulum (covered in ribosomes)

In animal <u>and</u> plant cells only Cannot see it

Golgi Apparatus (red)

F= modifies, sorts and packages proteins and lipids for storage or transport out of cell

- * Works with the SER
- * Storage and release of chemicals

In animal and plant cells only
Cannot see

Chloroplast (green)

- Convert solar

 energy to
 chemical energy
 stored in food
- Photosynthesis
 occurs here
 Only in plants
 and
 prokaryotes
 Can see it

Mitochondria (brown)

- F= converts chemical energy in food to usable compounds
 - * Makes ATP (energy)
 - * The Powerhouse of cell
- L= Found mostly in muscle cells in the cytoplasm
- Has their own nucleus

In animal <u>and</u> plant cells Cannot see it

Cell Wall (gray)

- L= Found in
 - * Plant cells
 - * Bacteria cells
 - * Fungi cells
- FUNCTION=
 - * Shapes, Supports and protects the cell

Membrane -Peroxisome

Golgi

Apparatus

- * inflexible
- * Contains cellulose
 Only in plants & bacteria
 Can see it

Cell Membrane (pink)

- Surrounds the cell
- Regulates the movement of substances in and out of cell
- Present in plants, animals and prokaryotes
- Can locate on microscope

Movement of a cell

• Flagella

- * Long hair-like extension
- * Aids in movement
- * Whips
- * Located inside the cytoplasm but hangs outside of cell

• Cilia

- * Short hair-like extensions
- * Help organisms to move
- * Located inside the cytoplasm but hangs outside of cell
- * Think Loogie

Flagella

In animal and prokaryote cells

Questions to Ponder?

- Name the parts of the Cell Theory.
- What controls what enters and exists the cell? How about the nucleus?
- Why are microscopes useful?
- Which came first the cell theory or microscopes?
- Distinguish between a prokaryotic and eukaryotic cell.
- What organelle(s) help to give a plant more rigidity?

Pg 38

Animal Cell

Pg 39 Plant Cell chloroplast ribosomes Golgi Body Endoplasmic reticulum vacuole Nuclear membrane nucleolus nucleus Cell Membrane

mitochondria Cell Wall cytoplasm

Day 2

The organelle went on Vaca?

- The materials in/out of cell would be unfiltered; lack of structure Cell membrane

 Nucleus
- Cell could not function; no direction for organelles
- Organelles would have no protection; nutrients could not move thru the cell Vacuole
- No storage place for food/water

ER

- Proteins would have no system of transport mitochondria
- No energy for cell to perform its functions

Vacation of Organelles

- Cells would not have building blocks to create organelles, repair cell, transport
- Cells would fill up with waste
- Plants would not be able to make food chloroplast
- Plant and bacteria would lack support and protection

BACTERIA

- * Divided into 2 Domains
 - Domain Archaea
 - -KINGDOM ARCHAEA
 - Bacteria that live in extreme habitats
 - Methanogens, thermopiles
 - Domain Bacteria
 - -KINGDOM BACTERIA
 - Bacteria that live everywhere else
 - E. coli
 - streptococcus

Oxygen or not?

Most bacteria require oxygen for respiration
 —thus they are called aerobic bacteria

 Others may be killed in the presence of oxygen – these are called anaerobic bacteria

How to classify bacteria? Part 1

- By using the **Shape** and **Arrangement**
- 3 main shapes
 - * COCCUS
 - * SPIRILLUM
 - *BACILILUS

How to classify bacteria? Part 2

- ARRANGEMENT
 - * DIPLO-
 - *STAPHYLO-
 - *STREPTO-

Naming Practice ©

- 2 circles =
- Round but in a chain=
- Rods in a chain=
- Spirals in a cluster=
- Circles in a cluster=

Bacteria's Cell Wall

- The <u>cell wall</u> is very strong to prevent ruptures (bursting)
- Antibiotics KILL bacteria (like penicillin)
 - * This is the only thing to kill bacteria
 - * It interferes with the cell wall
 - * It actually <u>drills a hole</u> in the cell wall

Types of cell wall determines antibiotic to be used

• Gram-stain Positive

- * Turns purple/blue
- * cell wall is layered
- * staphylococcus and streptococcus

Gram-stain Negative

- * Turns pink/red
- * cell wall is thick
- * Examples: *E.coli*, gonorrhea, salmonella and meningitis

How they reproduce

- Asexually
 - * Binary fission
 - * Conjugation

Types of Bacterial Diseases

Pick 4 and write them

- Tuberculosis
- Diphtheria
- Scarlet fever
- Bubonic plague
- Typhus
- Tetanus
- Cholera
- Tooth cavities
- Lyme disease

A VIRUS is ...

- A disease causing non-living particle
- Can only reproduce in living cells (a host)

https://www.youtube.com/watch?v=Rpj0emEGShQ

Considered NON-LIVING?

- Cannot respire on own
- Cannot move on own
- Cannot grow on own
- Cannot reproduce on own
- It needs a **HOST** for all of these things

How does it Reproduce?

- Before a virus can enter and reproduce in a cell
 - * It must recognize and attach to a specific site
 - * can only enter and reproduce in certain cells

* Once inside a host a virus takes over THAT cell's

metabolism

Reproduce (add to notes)

- LYSOGENIC CYCLE
 - Virus stays
 dormant waiting
 for perfect
 conditions to
 come out

- LYTIC CYCLE
 - Cell is destroyed

Lytic vs Lysogenic Cycles

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Virus

- <u>Capsid</u>: a protein coat that holds the genetic material
- **Envelope**: a membrane that surrounds the capsid for added protection

Genetic material

- Can be composed of <u>DNA</u>
 - * Warts
 - * Chicken pox
 - * mono

- Can be composed of RNA
 - * HIV
 - * AIDS
 - * Influenza
 - * rabies

Journal book info

Page 40

Page 40 Virus -vs.- Bacteria

Virus

- 1. Not alive
- 2. Can function in a host
- 3. Genetic material is <u>DNA or</u>
 <u>RNA</u>
- 4. Does not go thru metabolism
- 5. No cytoplasm thus it cannot go thru chemical reactions

Bacteria

- 1. Is <u>alive</u>
- 2. Contains <u>some organelles</u> such as cytoplasm, cell wall, and ribosomes
- 3. Genetic material is **DNA**
- 4. Does go thru metabolism
- 5. Has <u>cytoplasm</u> thus it can go thru <u>chemical reactions</u>
- 6. Mobile on own using flagella

Bacteria Cell Diagram

Virus diagram

Germ Theory of disease

- some diseases are caused by microorganisms.
- These small organisms, too small to see without magnification, invade humans, animals, and other living hosts.
- Their growth and reproduction within their hosts can cause a disease.
- "Germ" may refer to a virus, bacterium, protist, fungus, or prion.
- "Germs" are considered pathogens.

Figure out what these people did for the Germ Theory:

- * Ignaz Philipp Semmelweis
- * Louis Pasteur
- * Robert Koch
- * Florence Nightingale
- * Joseph Lister
- * William Stewart Halsted

Germ Theory

Show other power point

Day 3

Graphic Organizer – Page 46

Lab Stations

Station #1 – Compare and Contrast

- * Page 43-44
- * Complete all 5 compare/contrast cards
- * Write the question then answer it
 - Red
 - Orange
 - Yellow
 - Purple
 - Pink

Station #2 — Organelle Function Matching

- Page 42 in journal
- List all 12 organelles from the envelope on the left side of the journal
- Then correctly match the function card to the name
- Write it down
- This must be 100% correct before you can move on to the next station

Station #3 — Organelle Identification

- Page 45 in journal books
- Label the page A thru N on the left side
- Correctly identify each diagram
- This must be 100% correct before you can move on

Station #4 – Cell Sketch

- By reading the directions, correctly make a cell sketch of your choice
- This can be completed individually or as a partnership

Station #5 — Cell Trek Game

- 4 people needed to play
- You will need your own playing piece (eraser, piece of paper, coin, ring, etc)

Winner has the most organelles

HELPFUL WEBSITES

SOL REVIEW QUESTIONS

- * Complete Review # 12
- * http://solpass.org/hs.htm